
CREATING THE REPORT APPLICATION

Using Genero Report Writer
GRS 3.00

© 2010 Four J's Development Tools



Objectives

After this instruction, you will be able to:

• Create a simple report program in Java

• Generate XSD schema file (required by Report 
Designer)

• Change some output options
– Genero Web Viewer, PDF, Image…

– Preview, Save on Disk, Print

• Know about tips for writing the Java report 
program

February 15 Creating the Report Application 2



The simple Java report - Overview

• 2 Plain Old Java Objects (POJO) act as model 
to the list report

– Do not implement any specific interface

– Not an extension of a specific class

– Annotated to hint to JAXB how to be serialized to 
XML

• The Java program contains

– The Report Model Objects (data to include)

– Main method to run the report

February 15 Creating the Report Application 3



Reminder: Architecture

• Genero Report Engine (GRE)

– Uses the data and the report design to process the report

– Outputs the report in accordance with the runtime API 
functions

February 15 Creating the Report Application 4



Processing pipe (simplified)

February 15 Creating the Report Application 5



The simple Java report – Data 
Definition

• 2 methods to serialize data
– Ship data to report’s content handler

• Implementation of org.xml.sax.ContentHandler

• Ship arbitrary sized XML documents

• Low memory consumption

• Example:

– Use JAXB (Java Architecture for XML Binding)

• Provides means to serialize plain Java objects in a streaming manner

• Provides a schema generator to create an XML schema from annotated 
Java classes

• Since Java 6

February 15 Creating the Report Application 6



The simple Java report – Code 
description

• Import required Java classes

– com.fourjs.pxml.standardpipe.runtimeapi.*

• Mandatory classes, defined in ‘gre.jar’

– javax.xml.bind.annotation.*

• Mandatory classes for XML element annotation

February 15 Creating the Report Application 7



The simple Java report – Code 
description

• XML annotations
– Provide information in the XSD schema

– @XmlRootElement

• causes a global element declaration to be produced in the schema

– @XmlElement

• maps a property to an XML element

• required=true: GRE doesn’t support optional variables

• nillable=true: Allow null values

– @XmlAttribute

• Maps a property to an XML attribute

February 15 Creating the Report Application 8



The simple Java report – Code 
description

• Default Constructor required for JAXB 
deserialization

• Specify the report definition file (.4rp)

– Simple String variable

– Value hardcoded or passed as parameter

February 15 Creating the Report Application 9



The simple Java report – Code 
description

• Specify the report output format (PDF)

– Output file name
• Simple String variable specifying the name of the file on disk

– Renderer
• PDFRenderer in this case

• Check other renderers for other output formats in DOC

• Specify the handler

• Specify the report

– FourRpLayouter

February 15 Creating the Report Application 10



The simple Java report – Code 
description

• Specifying the data

• Run the report
– Uses JAXB to stream the object data thru the rendering pipe

• Generate and open the report file
– Use Desktop.open()

February 15 Creating the Report Application 11



Creating the XSD file

• Report template must match the XML data stream

• Edit report template against XSD schema

• Generate XSD schema with JAXB schema generator: 
schemagen

– From the command line
schemagen <file_name>.java

– From GRS
Add post compile command

February 15 Creating the Report Application 12



Summary of minimum Java report code

• Use a handler object
– FormatHandler handler = new FormatWriter(outputFilename);

• Define a renderer according to the expected output 
format
– PDFRenderer renderer = new PDFRenderer(handler);

• Create the report object specifying the report design 
file and the renderer object
– FourRpLayouter report = new FourRpLayouter(designFile, renderer);

• Specify the data
– Sales data = new Sales("Columbus Arts", 75038, new Date());

• Run the report
– report.runFromJAXBObject(data);

• Generate the report file on disk
– File result = new File(outputFilename);

February 15 Creating the Report Application 13



Changing output format

• Different output formats currently available

– PDF (already seen), SVG, HTML, XLS/XLSX, RTF, 
Image, PostScript

• Specify the format by defining the appropriate 
renderer object

– PDFRenderer, SVGRenderer, HTMLRenderer, 
ExcelRenderer, RTFRenderer, ImageRenderer, 
PostscriptRenderer

– No FormatHandler object required for 
ImageRenderer

February 15 Creating the Report Application 14



Changing output format

• Each output format can be configured by 
specific methods

– Examples

• excelRenderer.setMergePages(true);

• imageRenderer.setFileType("png");

• htmlRenderer.setEmbedImages(true);

• pdfRenderer.setJPEGQuality(0.5);

• Report file opens with default associated 
desktop application

February 15 Creating the Report Application 15



Preview SVG report in browser

• Purpose

– Render a report in SVG 
output format

– Benefit from streaming 
for big reports

– Preview the report over 
the Internet in Web 
browser

– Get navigation and print 
options

February 15 Creating the Report Application 16



Preview SVG report in browser

• Prerequisites

– Web Server

• Or use ‘NanoHTTPD.java’ as in the demo

– Web browser

• activated Java Script

• capability to render SVG 1.2 Tiny

• support for web fonts in the formats "ttf", "eot" or 
"woff"

– Web Viewer application: viewer.html

• hosted on the same server in the "../../viewer" 
directory

February 15 Creating the Report Application 17



Preview SVG report in browser

• Steps
– Define a BrowserViewer object

– Get Web Server’s Root Directory

– Set document directory

• Ensure to be unique for each report

– Set font directory

– Browse for the generated files

• URL should point to viewer.html & last item of document directory

February 15 Creating the Report Application 18



Processing pipe (streaming client)

February 15 Creating the Report Application 19



Using an intermediate XML datastream

• Does your existing application save reports for 
reprinting?

• What if you want to reprint in a different output format?

• How long does it take to create the data?
• Hit the database only once

• Each time you run the report do you have to reset 
configuration flags?

• Printed flags don’t have to be continually reset

• Each time you run the report do you have to 
enter new data?

• Get all your test configurations into one XML datastream

February 15 Creating the Report Application 20



XML data file best practices

• Create two applications

– The first application generates the XML data file

– The second application uses the XML data file to 
run reports

• Why?

– Hit the database ONCE

– Repeatedly run the report

• Against the same XML data file

• With different output settings

February 15 Creating the Report Application 21



Output report to XML data file

• Specific method to produce the XML file

– public void setRecordingFileName(String 
recordingFileName)

• Available in two classes

– FourRpProcessor

– FourRpLayouter

• Can be generated while 
running a report

February 15 Creating the Report Application 22



Produce report from XML data file

• The previously saved 
XML file is processed 
by the XML filter (the 
Genero Reporting 
Engine)

• Other configuration 
APIs can be called

February 15 Creating the Report Application 23



February 15 Creating the Report Application 24



Exercises

• Exercise 1
– Open the ‘OrderReportJava’ demo project

• Get familiar with Project Manager

• Exercise 2
– Create a new project with the files provided (‘Sales.java’ source and 

‘SalesList.4rp’ report design)
• Create a new Java project

• Rename (and reorganize) the project nodes

• Add the files

• Add an option to generate the XSD file on each compilation

• Run the application

– Modify the ‘Sales.java’ source code to generate another output format 
(XLS or RTF)

February 15 Creating the Report Application 25



Exercise

• Exercise 3
– Open the ‘OrderReportJava’ demo project again

– Modify the Java source code of ‘OrderReportJava.java’ to generate an XML 
data file

– Run a report and check if the XML data file was generated

• Exercise 4 (optional)
– Create a new Java project running a demo report from the XML data file

– Write a new Java source using the XML data file as input (use ‘Sales.java’ as 
basis)

– Use one of the report designs of the demo (‘OrderReport.4rp’)

February 15 Creating the Report Application 26


